
J O U R N A L O F M A T E R I A L S S C I E N C E 3 8 (2 0 0 3 ) 81 – 88

A study of the hot formability
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The high-temperature plasticity of a Zr-stabilised 2014 aluminium alloy was investigated in
a wide range of temperatures and strain rates. The microstructure of representative
torsioned samples was analysed by transmission electron microscopy, and the
characteristics of particle and precipitate distribution were quantitatively estimated. The
strain-rate dependence on stress and temperature was analysed by means of the
conventional constitutive equations used for describing hot-working behaviour as well as a
modified form of the sinh equation, where the stress was substituted by an effective stress,
i.e., by the difference between the stress and a threshold stress. This
temperature-dependent threshold stress was found to be a fraction of the Orowan stress
generated by precipitates increasing from 62 to 94% as temperature decreased from 773 to
573 K. C© 2003 Kluwer Academic Publishers

1. Introduction
The hot formability of Aluminium and its alloys has
been extensively evaluated in recent years by means of
torsion tests performed in a wide rage of temperatures
(473 K to 773 K) and strain rates (10−3 to 10 s−1)
[1–14]. In the case of pure Aluminium, it was found that
the steady-state flow-stress (σ ) dependence on testing
strain rate (ε̇) can conveniently be described by means
of a relationship in the form [15]

ε̇ = A(sinh ασ )n exp

(
− Q

RT

)
(1)

where A and α are material parameters, n is close to
5, and Q is equivalent to the activation energy for self-
diffusion in Al. On the other hand, it is well known
that when ασ is low, i.e., typically in the creep regime,
Equation 1 reduces to the conventional power law

ε̇ = A∗σ n exp

(
− Q

RT

)
(2)

being A∗ a material parameter. Now, it is well estab-
lished that in the case of pure metals the steady-state
creep-rate dependence on the applied stress has the
form of a power law with stress exponent close to 5
[16]; this observation suggests that, for pure metals, n
should be equal to 5 also when the sinh form is used.

Complex aluminium alloys exhibit a different be-
haviour; in many cases the activation energy for creep is
substantially higher than that for self-diffusion [1–14].
This effect has been attributed to the concurring action

of phenomena such as precipitation of strengthening
particles, particle-dislocation interaction and, last but
not least, coarsening of precipitates. The situation is
further complicated by the procedure used for calcu-
lating the parameters in Equation 1. The value of α

is currently calculated as a best-fit parameter, i.e., by
selecting the value that ensures the best linearity, in
double log scale, between sinh (ασ ) and ε̇. Since the
selection of an α value affects the magnitude of n, the
computed stress exponent often assumes very low val-
ues (n = 1–3) of little physical significance [11].

This study is based on a previous effort to reconcile
the different approaches used for describing the low
(creep) and high (hot-working) strain-rate regimes [17];
in particular, the attempt is made to elucidate some of
the basic features of high-temperature plasticity of a
Zr-stabilised 2014.

2. Material and experimental procedures
The 2014 aluminium alloy had the following chemical
composition (wt%): Cu = 4.32, Mg = 0.49, Zr = 0.12,
Si = 0.68, Fe = 0.23, Mn = 0.77, Ti = 0.03, Al = bal.

Specimens for torsion tests 10 mm in diameter with
a gauge length of 20 mm were machined from extruded
rods. Torsion tests were carried out at 573, 623, 673, 723
and 773 K on a computer-controlled torsion machine.
The equivalent stress σ and the equivalent strain ε were
calculated by the relationships:

σ =
√

3M

2π R3
(3 + m ′ + n′) (3a)
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ε = 2π NR√
3L

(3b)

where R and L are gauge radius and length, re-
spectively, N is the number of revolutions, M is the
torque, m ′ = (∂ log M/∂ log Ṅ ) at constant strain, and
n′ = (∂ log M/∂ log N ) at constant strain rate. For the
peak-stress condition, clearly n′ = 0 and, for the sake of
simplicity, m was also taken equal to 0. The simplified
formula used for σ does not take into account the gra-
dients in strain and strain rate, which tend to increase
σ by less than 10%.

The surface equivalent strain rates were 10−3, 2 ×
10−3, 10−2, 2 × 10−2, 10−1, 2 × 10−1 and 1 s−1. The
samples were heated to the testing temperature in air
by a frequency-induction coil. The temperature was
measured by an internal thermocouple in close prox-
imity to the gauge, since preliminary measurements
confirmed that this configuration of the control ther-
mocouple does not result in any significant tempera-
ture gradient along the gauge length. Prior to testing,
heating at 1 K/s from room to the desired temperature
was followed by 300 s of temperature stabilisation. Af-
ter rupture samples were quenched with water jets to
avoid microstructure modifications during slow cooling
from the testing temperature.

Specimens for transmission electron microscopy
(TEM) were ground to a thickness of about 100 µm,
then discs were prepared by means of double-jetting
with a solution of 1/3 HNO3 in methanol at −35◦C,
20 V and a current of 40–50 mA/mm2.

3. Experimental results
3.1. Flow stress in torsion
Plots of equivalent stress vs. equivalent strain under
various testing conditions are illustrated in Fig. 1. The
curves exhibit a peak, followed by a moderate flow soft-
ening up to a steady state. At the highest temperatures
under the lowest strain rate, the curves have an almost
parabolic shape, the peak being reached at strains close
to 1 after a prolonged strain-hardening stage. Fracture
strains are shown in Fig. 2; in general, ductility in-
creases with temperature; between 623 and 773 K rup-
ture strain increases with strain rate up to a maximum
for ε̇ ≈ 10−1–1 s−1.
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Figure 1 Equivalent-stress vs. equivalent-strain curves.
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Figure 2 Ductility as a function of testing condition.
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Figure 3 Strain-rate vs. peak-flow stress.

Fig. 3 illustrates the peak flow stress as a function
of strain rate; the strain-rate sensitivity of flow stress m
(m = (∂ log σ/∂ log ε̇)) increases with temperature.

3.2. Microstructure
Fig. 4 shows the typical microstructure of torsioned
samples at low magnifications; the microstructure con-
sists of chains of equiaxed or slightly elongated sub-
grains that developed inside the elongated grains.

Figure 4 Microstructure of a torsioned sample (773 K-5 s−1) (light
microscopy).
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T ABL E I Equivalent diameter (d), number per volume unit (NV) of
particles and Orowan stress for torsioned samples. The average value of
Orowan stress at each temperature was used to estimate the K parameter
in Equation 10

Temperature Strain rate d Nv σOr

(K) (s−1) (nm) (1018 m−3) (MPa)

573 10−3 71 14.6 34.0
573 10−2 75 14.8 36.3
573 10−1 58 14.8 28.9
673 10−3 67 15.3 30.7
673 10−2 72 12.2 29.0
673 10−1 77 17.0 36.9
773 10−3 78 14.6 31.6
773 10−2 76 15.7 32.0
773 10−1 65 22.3 34.0

Figure 5 Microstructure of the sample deformed at 773 K-10−2 s−1; the
substructure formed inside elongated grains is well documented.

TEM inspection of the microstructure of the sam-
ples tested at different temperatures under different
strain rates (Figs. 5 and 6) revealed the presence of
a dispersion of precipitates within the grains. Even at
the highest temperature, closely corresponding to the
solution-treatment temperature [18], the subgrain inte-
rior showed a distribution of fine precipitates. Consider-
able dislocation interaction with all the fine precipitates
was also observed, revealing their hardening effect. The
average equivalent diameter (d) and the number per
volume unit (NV) of the hardening particles were cal-
culated for each condition (Table I). The histograms
presented in Fig. 7 illustrate the size distribution of
precipitates at 673 and 773 K; it can easily be observed
that at 773 K, for the lowest strain rate, the frequency
of the fine precipitates is lower than in the other condi-
tions; this effect can be attributed to the dissolution of
the finest particles.

The micro-hardness and the electrical conductivity of
torsioned samples is plotted in Fig. 8. The analysis of
Fig. 8a shows that hardness increases with temperature,
an effect of solid-solution hardening; this conclusion is
supported by the progressive reduction in conductiv-
ity with increasing temperature and decreasing strain
rate noted in Fig. 8b. The hardness increase observed
with increasing strain rate should rather be attributed to
dislocation hardening; in fact, as strain rate increases,
the structure becomes progressively less recovered, as

(a)

(b)

(c)

Figure 6 Microstructure of samples tested at: 573 K-10−3 s−1 (a);
773 K–10−3 s−1 (b) and 773 K- 10−1 s−1 (c).

confirmed by the finer subgrain size usually observed in
this range of testing conditions [11]. A comparison be-
tween the hardness measured along the gauge length of
deformed samples (as a function of time in temperature,
i.e., of stabilisation and testing time) and that measured
after a T6 treatment is plotted in Fig. 9. Strained sam-
ples are usually softer than overaged or even solution-
treated ones, the hardness of sample deformed at low
strain rate at 773 K being similar to that measured after
a simple solution treatment. The very modest hardness
of the 2014 + Zr alloy as received clearly indicates that
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Figure 7 Relative frequency of particle-size distribution at two different
testing temperatures.
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Figure 8 Hardness measured along the gauge length near the surface
(a), and electrical conductivity (b) of torsioned samples as a function of
strain rate.

the initial state is similar to a stabilised microstructure.
It must necessarily be concluded that the initial, soft
structure is progressively hardened by the dissolution
of few precipitates, even though the very short time of
exposure cannot be expected to fully dissolve the pre-
cipitated phases. Rather, the analysis of Table I shows a
moderate variation of the volume fraction of intragran-
ular precipitates.
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Figure 9 Comparison between the hardness measured on torsioned sam-
ple, and that measured on the same alloy in the as received condition,
after solution treatment and after ageing; the time, in the case of torsioned
samples, represent the sum of testing and temperature-stabilisation
durations.

3.3. Constitutive relationships
The relationship between maximum stress, strain rate
and temperature was preliminarily described by the
well-known equation

Z = ε̇ exp

(
Q

RT

)
= A(sinh ασ )n (4)

being Z the Zener-Hollomon parameter; Q is obtained
from the slope S in an Arrhenius-type plot by the
equation

Q = 2.3n RS (5)

The use of the sinh function instead of the conventional
power law serves to make the constant T data linear, as
power-law breakdown results in a decrease in m at high
strain rates. However, changing the value of α causes
n and Q to vary accordingly; in particular an increase
in α invariably corresponds to a decrease in n. Fig. 10
shows an example of the plots used to calculate the
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Figure 10 Plot used for the calculation of n̄ (α = 0.01 MPa−1).
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Figure 11 Plot used for calculating the activation energy (α =
0.01 MPa−1).
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Figure 12 Effect of the selection of α values on the magnitude of the
calculated Q and n̄ values.

average values of n (n̄) and S (S̄), in this case, being
α = 0.01 MPa−1. The same analysis was repeated using
α values ranging from to 0.01 to 0.08 MPa−1; the plot
used for calculating the activation energy is shown in
Fig. 11. Apparently, two different regimes exist: a low-
temperature regime (T ≤ 723 K), where the activation
energy is relatively constant for a given α value, and a
high-temperature regime (T = 773 K) characterised by
a higher value of the activation energy.

The changes in n̄ and Q (low-temperature regime)
as a function of α are illustrated in Fig. 12. It can
clearly be observed that an increase in α corresponds
to a continuous decrease in n̄, while the activation en-
ergy Q decreases at first, then remains constant for
α > 0.04 MPa−1. For comparison purposes, the corre-
sponding trends obtained by testing a 2014 alloy pro-
duced by powder metallurgy [17] after 24 h stabilisa-
tion at the torsion temperature are reported in the same
figure. The plot in Fig. 12 suggests that the selection
of different α values, provided that α > 0.04 MPa−1,
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Figure 13 Zener-Hollomon plot (with Q = activation energy for self-
diffusion) for the 2014 + Zr alloy and the 2014PM alloy tested in [14].

does not affect the calculation of the activation en-
ergy. In this sense, the selection of α = 0.05 MPa−1

appears to be fully justified, since it compares very
well with the “traditional” value of α = 0.052 MPa−1

[11]. Fig. 13 plots the Zener-Hollomon parameter with
Q = QL = 143.4 kJ/mol (activation energy for self-
diffusion in Al) [19] as a function of the sinh (ασ ) with
α = 0.05 MPa−1 for the 2014PM [17] and the alloy of
the present study. It is easy to see that the data, particu-
larly at high and low strain rates, do not lie on a single
line, as would be expected, but rather over a quite large
scatter band.

4. Discussion
4.1. Constitutive equations
The empirical nature of Equation 1 when used to de-
scribe the hot-working behaviour of complex alloys is
fully evidenced by the unsatisfactory description re-
ported in Fig. 12. In fact, for pure metal or class-M
alloys, below power-law breakdown the strain-rate de-
pendence on stress can simply be described by means
of a conventional power law with stress exponent n = 5;
yet, when ασ < 0.8, Equation 1 reduces to a power law
with exponent n, and the activation energy is equivalent
to the activation energy for self-diffusion. For pure met-
als and class-M materials, the value of the n constant
in Equation 1 should thus coincide with the theoretical
value of n = 5; as mentioned above, this is not the case
of the alloy of the present study, and of many other
Al alloys [1–14] even when the calculated Q values
are reasonably close to the activation energy for self-
diffusion in Al. In the high strain-rate regime, the use of
Equation 1, with the values of n resulting from the se-
lection of the optimum α value giving the best linearity
in a log (ε̇) vs. log (sinh ασ ) plot, can give satisfac-
tory results; nevertheless, lower strain-rate data cannot
reasonably be expected to lie invariably on the same
straight line of slope n = 1.5–2.5. The inadequacy of
Equation 1 in giving an accurate and physically sound
description of low strain-rate data when the computed
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n value is 1.5–2.5 has been demonstrated in the anal-
ysis of creep and torsion data obtained by testing the
2014 alloy produced by powder metallurgy [17]. In fact,
for PM materials m tends to decrease with decreas-
ing strain rate, a behaviour that cannot be described
by Equation 1. By analogy with particle-strengthened
alloys, where the applied stress in the power law is con-
veniently substituted by the an effective stress, that is
the difference between the applied stress and a thresh-
old stress σ0, Equation 1 can be rewritten in the form

ε̇ = A0

[
sinh α′

(
σ − σ0

G

)]n

exp

(
− Q

RT

)
(6)

Equation 6 reduces to

ε̇∝
(

σ − σ0

G

)n

exp

(
− Q

RT

)
(7)

whenα′ (σ − σ0)/G < 0.8; n, in both Equations 6 and 7,
should be = 3 or 4–5. Analysis of the creep data for
the 2014PM alloy has allowed to estimate the thresh-
old stress with sufficient accuracy, leading to conclude
that deformation (n = 3) at 773 and 723 K was con-
trolled by viscous glide whereas at the lowest tempera-
ture (n = 5) climb was the rate-controlling mechanism;
in this regime, the best description of the experimental
data was obtained for α′ = 305 [17].

In the case of the alloy of the present study, the direct
calculation of the threshold stress is precluded by the
lack of very low strain-rate (creep) data. Nevertheless,
an attempt was made by simply substituting α′ = 305
and n = 5 at T = 573–673 into Equation 6, and using
n = 3 at T = 723–773 K. The resulting equations were
then used to fit the experimental data (Fig. 14), obtain-
ing an estimation of the threshold stresses; the fitting
of the data, as shown in Fig. 14a, is excellent. Fig. 14b
shows the plot of the term AT = A0 exp(−Q/RT ), ob-
tained by best fitting, as a function of the reciprocal
absolute temperature (T = 573–673 K). The computed
Q value is reasonably close to the activation energy for
self-diffusion.

Obviously, the assumption of a constant value of
threshold stress at a given temperature is an oversimpli-
fication; as mentioned above, at the higher temperatures
the progressive dissolution of precipitates should lead
to a marked decrease in threshold stress, particularly
when the strain rate is low. Yet, for strain rates exceed-
ing 10−3 s−1, the testing time corresponding to the peak
stress is at least of one order of magnitude lower that
the duration of temperature stabilisation; thus, it can
reasonably be assumed that in the majority of tests the
volume fraction and size of the precipitates is fairly sim-
ilar, since it is the result of the dissolution of particles
that took place during the 300 s at the testing temper-
ature before torsion. This assumption is in agreement
with the data reported in Table I.

The temperature-compensated strain rate Z as a func-
tion of the non-dimensional effective stress is plotted
in Fig. 15 for both the present alloy and the 2014PM
alloy. The selection of Q = 143.4 kJ mol−1 to calcu-
late the temperature-normalised strain rate is justified
by its similarity to the activation energies for diffusion
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Figure 14 Strain rate vs. peak flow stress described by means of Equa-
tion 6 (a); the Arrhenius-type plot in (b) was used to calculate the true
activation energy.

of Mg (130 kJ/mol) and Cu (126 kJ/mol) in Al [20].
As expected, Fig. 15 clearly shows that climb is rate-
controlling in the low-temperature regime (573–623 K)
and in the high strain-rate region at 673 and 723 K. At
these temperatures in the low strain-rate regime, and
practically in the whole range of strain rates investigated
at 773 K, viscous glide is the rate-controlling mecha-
nism (i.e., n = 3) [19]. Quite interestingly, the two sets
of data almost overlap, indicating that, even though the
nature of the precipitates and their size and distribution
are different (in PM alloys there is an additional dis-
persion of fine oxide particles), the same mechanisms
operate in these alloys of similar composition.

Fig. 16 plots the calculated values of the threshold
stresses as a function of temperature. The modulus-
compensated threshold stress exhibits a weak depen-
dence on temperature; only at 773 K, does the partial
dissolution of dispersed phases result in its marked
decrease.
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4.2. Microstructure and threshold stress
The nature of the threshold stress in complex alloys
produced by powder metallurgy or ingot casting has
been investigated in several studies [21–30]. In alloys
produced by casting, it has been attributed to the in-
teraction between dislocation and fine incoherent pre-
cipitates [29–30]. In the case of the present study, the
dispersion of fine precipitates represents an effective
obstacle to dislocation motion; as a result, there should
exist a direct correlation between particle size spacing
and threshold stress. Table I reports the magnitude of
threshold stress, calculated by the relationship [31]:

σOr = 0.81MGb

2π (1 − ν)1/2

ln(d/b)

(λ − √
2/3d)

(8)

where ν is Poisson’s ratio and M is the Taylor factor,
and

λ = 1

2
√

Nvd
(9)

The comparison between threshold and Orowan stress
reveals that

σ0 = KσOr (10)

where K = 0.92 ± 0.11, 0.75 ± 0.09 and 0.37 ± 0.01
at 573, 673 and 773 K, respectively. This result can
favourably be compared with the one obtained by test-
ing the 2024PM alloy in creep where, with the Orowan
stress expressed by Equation 8, K ≈ 0.94, 0.84 and 0.62
at 548, 573 and 603 K [24], although in this case the
Orowan stress was calculated by taking into account
only fine particles (d < 150 nm).

5. Conclusions
The high-temperature plasticity of a 2014 + Zr
aluminium alloy was investigated in a wide range of
temperatures and strain rates by means of torsion tests.
The strain-rate dependence on stress and temperature
was described by means of a modified form of the
sinh equation, where the peak flow stress (or the ap-
plied stress, in the case of creep tests) was substi-
tuted by the effective stress, i.e., the difference between
peak stress and a threshold stress. This temperature-
dependent threshold stress was found to be a fraction
(62–94%) of the Orowan stress generated by the dis-
persion of precipitated phases.
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